A Non-commutative Formula for the Colored Jones Function

نویسندگان

  • STAVROS GAROUFALIDIS
  • MARTIN LOEBL
چکیده

The colored Jones function of a knot is a sequence of Laurent polynomials that encodes the Jones polynomial of a knot and its parallels. It has been understood in terms of representations of quantum groups and Witten gave an intrinsic quantum field theory interpretation of the colored Jones function as the expectation value of Wilson loops of a 3-dimensional gauge theory, the Chern-Simons theory. We present the colored Jones function as an evaluation of the inverse of a non-commutative fermionic partition function. This result is in the form familiar in quantum field theory, namely the inverse of a generalized determinant. Our formula also reveals a direct relation between the Alexander polynomial and the colored Jones function of a knot and immediately implies the extensively studied Melvin-Morton-Rozansky conjecture, first proved by Bar-Natan and the first author about ten years ago. Our results complement recent work of T.T.Q. Le and H. Vu, who also give a noncommutative formule for the colored Jones function of a knot, starting from a noncommutative formula for the R matrix of the quantum group Uq(sl2); see [LV].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Colored Jones Polynomial and the Kashaev Invariant

We express the colored Jones polynomial as the inverse of the quantum determinant of a matrix with entries in the q-Weyl algebra of q-operators, evaluated at the trivial function (plus simple substitutions). The Kashaev invariant is proved to be equal to another special evaluation of the determinant. We also discuss the similarity between our determinant formula of the Kashaev invariant and the...

متن کامل

Experimental evidence for the Volume Conjecture for the simplest hyperbolic non-2-bridge knot

The Volume Conjecture loosely states that the limit of the n-th colored Jones polynomial of a hyperbolic knot, evaluated at the primitive complex n-th root of unity is a sequence of complex numbers that grows exponentially. Moreover, the exponential growth rate is proportional to the hyperbolic volume of the knot. We provide an efficient formula for the colored Jones function of the simplest hy...

متن کامل

The Sl3 Colored Jones Polynomial of the Trefoil

Rosso and Jones gave a formula for the colored Jones polynomial of a torus knot, colored by an irreducible representation of a simple Lie algebra. The Rosso-Jones formula involves a plethysm function, unknown in general. We provide an explicit formula for the second plethysm of an arbitrary representation of sl3, which allows us to give an explicit formula for the colored Jones polynomial of th...

متن کامل

The Non-commutative A-polynomial of Twist Knots

The purpose of the paper is two-fold: to introduce a multivariable creative telescoping method, and to apply it in a problem of Quantum Topology: namely the computation of the non-commutative A-polynomial of twist knots. Our multivariable creative telescoping method allows us to compute linear recursions for sums of the form J(n) = P k c(n, k)Ĵ(k) given a recursion relation for (Ĵ(n)) a the hyp...

متن کامل

On the Szeged and Eccentric connectivity indices of non-commutative graph of finite groups

Let $G$ be a non-abelian group. The non-commuting graph $Gamma_G$ of $G$ is defined as the graph whose vertex set is the non-central elements of $G$ and two vertices are joined if and only if they do not commute.In this paper we study some properties of $Gamma_G$ and introduce $n$-regular $AC$-groups. Also we then obtain a formula for Szeged index of $Gamma_G$ in terms of $n$, $|Z(G)|$ and $|G|...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004